Section 6.4 - Exponential Growth and Decay (FDWK)

1. (\#11) Suppose that the cholera bacteria in a colony starts with 1 bacterium and doubles in number every half hour. How many bacteria will be in the colony at the end of 24 hours?
2. (\#12) A colony of bacteria is grown under ideal conditions in a lab so that the rate of change of the population is proportional to the amount present at any time. At the end of 3 hours there are 10,000 bacteria. At the end of 5 hours, there are 40,000 bacteria. How many bacteria were present initially?
3. (\#13) The half-life of radon-222 is 3.8 days. About how long will it take an amount of radon in a sealed sample of air to decay to 90% of its original value?
4. (\#18) An aluminum beam was brought from the outside cold into a machine shop where the temperature was held at $65^{\circ} \mathrm{F}$. After 10 minutes, the beam warmed to $35^{\circ} \mathrm{F}$. Use Newton's Law of Cooling to estimate the beam's initial temperature.

Section 6.4 - Exponential Growth and Decay (FDWK)

5. (\#19) Suppose that a cup of soup cooled from $90^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 10 minutes in a room whose temperature was $20^{\circ} \mathrm{C}$. Use Newton's Law of Cooling to answer the following:
a. How much longer would it take the soup to cool to $35^{\circ} \mathrm{C}$?
b. Instead of being left in a room, the soup is put into a freezer whose temperature is $-15^{\circ} \mathrm{C}$. How long will it take the soup to cool from $90^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$?
6. (\#20) The temperature of an ingot of silver is $60^{\circ} \mathrm{C}$ above room temperature right now. Twenty minutes ago, it was $70^{\circ} \mathrm{C}$ above room temperature. How far above room temperature will the silver be 15 minutes from now? 2 hours from now?
7. (\#28) In some chemical reactions the rate at which the amount of a substance changes with time is proportional to the amount present. For the change of δ-glucono lactone into gluconic acid, for example, $\frac{d y}{d t}=-0.6 y$, when y is measured in grams and t is measured in hours. If there are 100 grams of δ-glucono lactone present when $t=0$, how many grams will be left after the first hour?
8. (\#29) Suppose the electricity is draining from a capacitor at a rate proportional to the voltage V across its terminal and that, if t is measured in seconds, $\frac{d V}{d t}=-\frac{1}{40} V$. How long will it take the voltage to drop to 10% of its original value?
